Tuesday, 11 July 2017

Matriz De Autocorrelação Média Em Movimento


Objetivo: Verificar os lotes de Autocorrelação de aleatoriedade (Box e Jenkins, pp. 28-32) são uma ferramenta comumente usada para verificar a aleatoriedade em um conjunto de dados. Essa aleatoriedade é verificada pela computação de autocorrelações para valores de dados em diferentes intervalos de tempo. Se aleatório, tais autocorrelações devem estar próximas de zero para separações de tempo e intervalo. Se não aleatório, uma ou mais das autocorrelações serão significativamente diferentes de zero. Além disso, os gráficos de autocorrelação são usados ​​na fase de identificação do modelo para os modelos de séries temporais médias autorregressivas Box-Jenkins. Autocorrelação é apenas uma medida da aleatoriedade Observe que não corretamente não significa aleatoriamente. Os dados que possuem autocorrelação significativa não são aleatórios. No entanto, dados que não mostram autocorrelação significativa ainda podem exibir aleatoriedade de outras maneiras. A autocorrelação é apenas uma medida de aleatoriedade. No contexto da validação do modelo (que é o principal tipo de aleatoriedade que discutimos no Manual), a verificação da autocorrelação é geralmente um teste suficiente de aleatoriedade, uma vez que os resíduos de modelos de montagem pobres tendem a exibir aleatoriedade não sutil. No entanto, algumas aplicações exigem uma determinação mais rigorosa da aleatoriedade. Nestes casos, uma série de testes, que podem incluir verificação de autocorrelação, são aplicados, pois os dados podem ser não-aleatórios de muitas formas diferentes e muitas vezes sutis. Um exemplo de onde uma verificação mais rigorosa da aleatoriedade é necessária seria testar geradores de números aleatórios. Lote de amostra: as correções automáticas devem ser próximas de zero para a aleatoriedade. Tal não é o caso neste exemplo e, portanto, a suposição de aleatoriedade falha. Esse gráfico de autocorrelação de amostra mostra que a série de tempo não é aleatória, mas sim um alto grau de autocorrelação entre observações adjacentes e adjacentes. Definição: r (h) versus h As tramas de autocorrelação são formadas por eixo vertical: coeficiente de autocorrelação onde C h é a função de autocovariância e C 0 é a função de variância Observe que R h está entre -1 e 1. Observe que algumas fontes podem usar o Seguinte fórmula para a função de autocovariância Embora esta definição tenha menor preconceito, a formulação (1 N) possui algumas propriedades estatísticas desejáveis ​​e é a forma mais utilizada na literatura estatística. Veja as páginas 20 e 49-50 em Chatfield para obter detalhes. Eixo horizontal: intervalo de tempo h (h 1, 2, 3.) A linha acima também contém várias linhas de referência horizontais. A linha do meio está em zero. As outras quatro linhas são 95 e 99 bandas de confiança. Observe que existem duas fórmulas distintas para gerar as faixas de confiança. Se o gráfico de autocorrelação estiver sendo usado para testar aleatoriedade (ou seja, não há dependência de tempo nos dados), recomenda-se a seguinte fórmula: onde N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa ) É o nível de significância. Nesse caso, as bandas de confiança possuem uma largura fixa que depende do tamanho da amostra. Esta é a fórmula que foi usada para gerar as faixas de confiança na trama acima. Os gráficos de autocorrelação também são usados ​​no estágio de identificação do modelo para montagem de modelos ARIMA. Neste caso, um modelo de média móvel é assumido para os dados e as seguintes faixas de confiança devem ser geradas: onde k é o atraso, N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa) é O nível de significância. Nesse caso, as bandas de confiança aumentam à medida que o atraso aumenta. O gráfico de autocorrelação pode fornecer respostas para as seguintes questões: Os dados são aleatórios É uma observação relacionada a uma observação adjacente É uma observação relacionada a uma observação duas vezes removida (etc.) É a série de tempo observada ruído branco É a série temporal observada sinusoidal A série temporal observada é autorregressiva O que é um modelo apropriado para as séries temporais observadas O modelo é válido e suficiente É a fórmula ss sqrt válida Importância: Garantir a validade das conclusões de engenharia Aleatoriedade (juntamente com modelo fixo, variação fixa e distribuição fixa) é Um dos quatro pressupostos que geralmente dependem de todos os processos de medição. A suposição de aleatoriedade é extremamente importante para os seguintes três motivos: a maioria dos testes estatísticos padrão depende da aleatoriedade. A validade das conclusões do teste está diretamente relacionada à validade do pressuposto de aleatoriedade. Muitas fórmulas estatísticas comumente usadas dependem da suposição de aleatoriedade, sendo a fórmula mais comum a fórmula para determinar o desvio padrão da amostra: onde s é o desvio padrão dos dados. Embora fortemente utilizados, os resultados da utilização desta fórmula não têm valor a menos que a suposição de aleatoriedade seja válida. Para dados univariados, o modelo padrão é Se os dados não são aleatórios, este modelo é incorreto e inválido, e as estimativas para os parâmetros (como a constante) tornam-se absurdas e não válidas. Em suma, se o analista não verificar aleatoriedade, a validade de muitas das conclusões estatísticas torna-se suspeita. O plano de autocorrelação é uma excelente maneira de verificar essa aleatoriedade. Suponha que você tenha N séries temporais (classe xts). Você pode sugerir uma maneira (por exemplo, uma função existente) para calcular a correlação média rotativa (janela rolante). Então, você tem (para Exemplo) 10 séries temporais. O primeiro passo é calcular 60 dias de correlação entre primeiro e segundo, primeiro e terceiro, primeiro e quarto, e assim por diante. O segundo passo é calcular a média desse valor de correlação. Fim do primeiro ciclo. Depois de avançar um dia e começar todo o processo (primeiro e segundo passo), os resultados são uma série de tempo com valores de correlação médios. Alguém pode ajudar a encontrar uma maneira eficiente de fazer isso Esta é a estrutura dos meus dados: Suponha que você tenha todas as séries no quadro de dados chamado X, nas primeiras dez variáveis. Então: se você não possui um quadro de dados, acho que a maneira mais fácil é primeiro criar um quadro de dados :) - desde que suas séries temporais sejam todas do mesmo comprimento. Para excluir a diagonal 1s da matriz de correlação, você pode primeiro definir uma função que calcula a média de todos os valores abaixo da diagonal (ou acima do diag, doenst make a difference): (Não testado, mas acho que é um problema)

No comments:

Post a Comment